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>'vl. Introduction. .

»

}Therefere'twovoontreeeiné.efeitqdes“thch are.rather prevalent
'among‘engineers ﬁhen faced with nonlinear ﬁetwork problems:. the
naive bellef that nonllnear nroblems .can be handled by extensions
fof llnear uecnniques and theApesslmiStic view that no known syetematiq
| approaoh w1ll_worz, and‘tﬁerefore%it is Dest to avoid these nroblems.'
. However,'naiveté';ill;of en lead to trouble, and pesszmlsm will not
~ solve todayis prooleme, ‘Vhile there‘cap,be_no simple and general

’quantitative annroachee ﬂo*nonlinear analyeis (quantitative questions -

are, in any case,,best left to- uhe conouter) the purpose of this

oaper 1s to show that there are’ inportant Oualluﬁtlve questlons which .

can be answered in a systematzc fashlon. Moreover, these‘questions -
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should be resolved before any inte111 ent quantitatlve analysie can’
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proceed.

As an example of the type of gualitative problem which arises -.  : :

oonsider the equilibrium ecuations for a network of resistors and

sources. :In the linear case existence and wigueness of the solutions
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of- these equations are usuwally taken for granted. In the nonlinear

case, however, these issues cannot be ignored, and they are not always

R

;easy t0 resolve. Vurtrc"“ore, once it is lmowvm that one or nore
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solutions exist, the problcm of computation remains.




. As another example, consider an RLC network, ‘possibly containing -

constant souuces buu no other excitatlon. In the lincar case we expect

" that whatever initial'bondztions we epply to the reactive elements, -

" .the network variables will tend toward an equilibrium as t = o, or else

" plow up.t (The-bbrderline'caee of oscillatory solutions is hafdly

‘ wortn considerlnv in a. realistlc s;tuatlon ) There are rether Eimple means
'~:'of determining wamch of these two condltlons holds.‘ In the nonlinear
case, -network var1ables nay settle down to any one of several equlllbria,
_jthey :r.a:,"‘:.e:*....,as*ﬁ totlcally toward certain oscilletory condlulons
' (funeanentelly dlfferent from llnear oscilletions), or they may &row

ffvwithout bound. If the: first possibility occurs, let us say that the

network has a.“constant 1imiting regimé‘. Un*ortunately, this imnortant

attriﬁute of honlinear networxs is not. easzly escertained 1n general.

Finally, consider an RLC network driven by time-varying sources.--f*

""" In the linear case one’ 0enerallyvexpecte-that, after transiente have

i

“died away, each excitatlon aneform will lead to a unigue response.
'We shall call thls a “unique llmltlnb reglmé‘ ‘In the nonllnear case
‘this 18 more tne exceptlon than the rule. In fan, one of the most

useful features of nonllnear networks is that they ‘can be de51~ned 80

that transients,do not die out. It is therefore pertinent to ask:"’

- f what sorts of networks do or do'hot poséess-uni@ue limitinglregimes?

This {00, is far from a trivial question.

The qualitativeiquestions raised above and many more.like_them are

fundamental ones to the nonlinear network analyst. Yet, for very zeneral

tyves of networks and systems they are largely unanswerable. There are,

however, certain special cheracteristics of recinrocal netuorks which
4, greatly simplify the problem of determining cualitative network behavior.
- In the following sections we shall show by means of simple examples that

reciprocity as well.as certain other properties allow us to obtain rather
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simple and difect answers to the questions posed above. Furthernore,
these answers will be obtained on the basis of little or no specific
information fegarding the network. |

Since this is basically a.tutorial exposition, it will draw on
tﬁe results of severei'different authors., Also, certain mathematical
assunntions will sonetimes bte omitted in the 1nterest of clarzty and

_brevity,. and proofs will merely be outlined.

2; “One-element—)rind Neiworks. '
In this seotios.oertain properties‘of4one5element;kind networks

'ZWill be discussed usihg'the ailJresistiVe network as an examole{
(Most of the results on the resistive case-can be carried over to

“the canacitive case by rep1a01ng currents by charges, and to0 the
v‘ induct1ve case by renluc1ny voltages by flux—liniages ) 3By resistive
" networks ve mean. collections of bremcnes defined by uerminal relations
of the form;%, Sl | Rt | o v _

3‘(6,,. W)-=0 W

H

‘_Where.the'veotorsz ervand i% %ep?esept’terminal4voltages end‘currents‘
reSpectively, ani'the &ebtorif,fepresents a sei_of implicit functions
‘relating these’variaoles.(one.relation for each branch). ~There may

}fror-may not bve coupling among the felations. ‘A collection of branches

E of uhl“ type may. e thouunt of as a single ﬂulti-poru reszstive elenent
10 r, if certain sets of relations are “decoupled" from other sets, they

» ogn,be.oonsidered as & collection of several elements.”In all practical

Zverywhere except in section 4, all elements will be time-invariant.

The same notation will be used throushout for vectors and scalars. The
‘oontexu'will make the meaning clear. Similerly, in diagrams, a sincle port
labelled with a vector variable will represent a set of ports.
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cases, it will %e poesible to write the terminal relations in omne

or more of the explici{ forms,

ev‘ .-;‘ Er(lf)_ - | - ‘. o -‘ ( a)
e T @
b= 'L‘r«. (e"'u ""(3), | (2¢)
Cy—z E"L(e"c, ‘-r,_)'

depending upon unlch varlaoles in (1) can be expressed in terms of which

others. . The llnear reei, tor, indepenaenu voltaze or current source

and low frecuency model of 2 diode are all examples of one-port (i.e.,

'non-coupled) resistive elements. Zxamples of multi-port resistive

elementé would ‘be’ the gyrator, the ideal transformer end the low
frequency model Of'the t:ansistor.g
The mosttimﬁertentvettributes of network'elements.are those
wn1ch remain 1nvar1ant under interconne0ulon. Two properties
whlch exhibit this 1nvar1ance anu Wthh are of fundamental importance
in nonlinear network analysms a:e reclpr001ty nnd quasillnearlty.
‘Recinrocitz;:

Reciprocity is defined in terms of the symmetry of certain

BRY

>ihcrementel paramete: ﬁatricee. In paftidular Aif a resistive element
is chdrdbterl zed by termlnal relatlons (1a), (lb) or (1c) resnectively,

) 1
an 1ncremental resistance matrix

R (4,) = YE. /37, o ()

an incremental corductance natrix

G(ew) = 71./%ex o (30)
or a hybrid incremental resistance matrix

H(er, L."-z.) =2 (T ;ErJ/D(e, G c)

lunen x and y are vectors, 29/ denotes the matrix [“qj [Jyé/Dx ]

spa
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coan ve defined. An elémenf ﬁhose 5ncrementa1 paraneter matrices
are symmetric (for all'valuesqof.their argunents) is said to be
reciprocal. (The;negative'sign in (Zc) is.neceésafy to assure tha
required symmetry.)u‘dbviogsly one-poft elemenﬁs are reciprocal

b/ definltlon.v‘v .

“An ex»renely useful Dronerty of recmnrocal elements is the

foct that they can oe charucuerlzed in terms of (scalar) state functions.

- In the resmst1Ve case these are called "dls vation functionst and
they are c010¢ete;y ana;o ZOUus co Lhe enersy functions essocia
5react1ve elements; nThus,.for'a,:eéiprocal element defined by (2a)
_the dissipation function.
. 1 - o o '
@(iv) .=f.gr (“)J@ B . (4a)
can be defined., If thevterminal relations are given in the form
'(Zb) one cen dexlne . :.‘ .
tP(e,.) f'r (w)a?w P ”(%)-
and if they are ,iven'in the form'(ac) the "hybrid" function
- eﬁ)c}, . ’

“ ‘?” (e vy, < Iv?(‘”» W) dw - E:’CL (w";> du (4“’)

can be defined. Zach of these is a line intezral and is independent

of path of integration‘because of the reciprocity condition. The

lower limit on the intecral “as been onitted since it merely introduces

an unimportant arbitrary constant. ' The usefulness of the dissipation
function is that it completely defines the terninal characieristics

of the element in a ve¢y compact feshion. Note thot ccuations (2)

can be obtained from (4) by differentia tlon.

In all that follows, vectors are treated as colwins and (. ) denotes
" transposet,
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. clearlyvhas-the above properties.

Couasilinearity.

Anong the feciprocai elements there is a ;ﬁeciai class which shares
certain qualitative featureé with the common linear elements, end is
therefore_qélled cuasilinear. ‘(See Dﬁffin [17). A one-port resistive
element‘is.calléd'quasilineér (QL) if i%s incremental résistancelggg
conductance ére bounded  below by‘positive qonst#nts. IA malti-port
element is QL if it is reciprocal and iﬁ the least eirenvalues of 1ts

incremental resistance and conductance matrices are bounded below by

" positive constants. Thus these elements are always "incrementally®

passive, although they need not be passive in the usual sense of the

. tern. The non-hybrid functions § and ' associated with a QL element

have special properties:

1) They‘tend radially to + .
©2) They are strictly concave.
'Aé:an example, a linear multi-port with symmetric pbsitive definite

resistance matrix R is QL. Ité'dissipation function, ¢(ir) =J%iz'FLfr

[

.

Interconnectio .

Yow, consider a}network containing only reciprocal resistive elements,

s

and suppose-soldering-iron or pliers entries are made into  the network

~at arbitrary points, but with the following restrictions: (1) The

voltages and currents. at all enfries are topologically independent, and

(2) 1T e represents the voltazes at the solderins-iron entries and
£ s '

i the currents at the pliers entries, the values of all other voliaces
and currents in the network can be esxpressed unicuely in terms of (e, 1 ).
. s D

IT these restrictions are fulfilled we shall call the seb (e , ip) and
. _ . s

the associated set of entries "complete'. In desirmating a particular
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. complete set of entries of 2 networls we are in effect viewins 1t as a sinzle

Wlti-port element which can @e described by terminal relations of

the form

| e ’ "
= Is(cs). or e, EP(LP) or 4

. . "S

dependiﬁgwupon;whiéh(types (soldéring iron or pliers) of entries are
 selected. (See Fig. 1). Nowvit can be sﬁbwﬁ‘that nay resistive netvork
iicohtaining onlyiré@i?focal'(py'QL) elements wiil be reciprocal (or QL)
 when.viewe@'from any complete set of entries. It is in this sense that

recipfociﬁy.and(quasiliﬂeérity are ihvériant undér intérconnection{

.

Torilibrium Eouations. -

Most systematic procedures for formulating equilibrium equations
for resistive networks reduce %0 selecting a complete set of entries
(and variables) for the network, constructing the functions appearing

 in'(5) and setting these functions equal to zero (that'is. reducing

* the external excitation to zero). Thus, in these systematic formulations,

. the reciprocal and QL vroperties are preserved.
As an example, consider the node equations for a connected network

"whose elemeﬁts are derined by the terminal‘relations,
Letting es be the node-to-datwum volitages, and A be the incidence matrix

- for the network (reduced by the deletion of the datum node), we have

: %
‘AL =0 (XCL) and e = A e (XvL)

which, when combined with (6), zive the node e¢uations
. — —_— y ’
Vo= Io(e) = ATe(Aes) =0 | (7)

If independent sources are aided to some or all of the branches
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in the manner of Fig. 2, eq.(?) becomes
N -7 5 |
s Ls{e) = A [T.(A "t:.f"/)-’— 7 : (8)
where the vector V represenis th voltage sources and J the
current sources. It can be seen by inspection of (7) and (8)
that the incremental conductance matrix G(er) for the original
olements transforms to the matrix AGA for the networic equations,

and hence it follows that boih reciprocity and quasilinearity are
preserved.
Let us now turn to questions of existence, uniqueness and

computation of solutions of the equilibrium equations of resistive

“netvorks, with perticular reference to recinrocnl and QL networis.

In general, equations of the form (8) can have one, many, or no

solution., (Of course, the network itself will always have at least

one equilibrium,'but‘the nodels chosen to represent it, being oaly
approkimafe,bmay not &ispiay this prdperty.) Therefofé, one.must first
determine con&itipns under which a solution of tne equilibrium
equations exists. .“4 |

EXAMPLE 1: Let us determine under vhat conditions the node

equations of a recipr:cal network will have at least one solution.

Because of reciprocity, q.(7) or (8) can be expressed in the form

*

G=(2) . @

vhere

. es ) ) - -
o= [T 0)

Beuation (9) indicates that the ecuilidris of o recinrocsl network

wnction.
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Yow, for @' to have at least one stationary point, all that is

recuired is that it tend radlally to . This will be the case,

for example, if the network is composed of one-port elements each

o

Y 3

of vhose e-i characteristics tend toward +(-) 00 as their arzuments

tend toward +(=) oo

Having established‘éxisfenCe it.is equally important to
determine if thé equilibriﬁm ég* tidns‘have rore than one solutiénf
.In general~a‘network‘of reciprocél-elements ﬁay possess many
equilidria. (Fgrtexample,'tunnel diodes are often used to obtain
'several‘eqﬁiiibrié.) If, however, thé network conteins only QL
elementé,‘wé can estgﬁliSh both existence and unigueness.

ZXANMPIE 2:  Aséﬁme;nbw that the networlt elements of Ix. 1
are all QL. iCohdifionv(l)‘on pace slimpiies that a solution of -
:the’node_eQuations exists,'éndfcdndition.(z) implies that P! will
pdsseés one én& oniy:one stétionaryypoint {a minimum).. Hence thé‘,
network Wiii_ﬁave a unigue ecuilibriunm.

The abo&e'discuééi§ﬁ with respect to the node equétions generalizes
to other formulations of éhe(equilibrium‘equations'and‘shows that

-

anv netvoric of QL elenments has exacily one =scuilibrium.

Zven vhen it is known thet a waique solution of the equilibrium

equations eixists, it generally cannot be compubed exacily. Successive

approximation is usually the only reasonoble computational procedure.

However, it is important to be able to predict when such a nrocedure

will converge. Here ziain reciprocity and quasilinearity are helpful.

Since the equilibria of a recivrocal networit can be identified with

g e et s e
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© to converge on a set of equilibrium values. It is lmown that this
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the stationary points of a dissipation function, it is natural
to try some sort'of "descéhﬂ' method'which, in successive iterations,
will seek out tne statlonary p01nts of the dlssipatlon ;unction.

Alt hou“h it was nou descrlbea as such bJ lts origlnauors, the

-"relwxat¢oﬁ‘ method of Birknof; and Dlaz [2]1s an mterestlnu ezamnle

of such. a procedure.
EXANPIE 3: Consider a connecied network with node-to-datum

voltagses el,,....; e .  One way of finding a set of equilibrium values

~of these voltages is to assume arbitrery values of all but one of them,

and then solve the KCL equation about the remainins node for the

remaining voltage. This is referred to as Wrelaxing' that node and is

‘a well —Lnown procedure in linear eouaulons. By relaxing each node

:in-suCCession and‘repeating the procedure lons enouch, we might hope

procedure does not converge in general, but it 2lways does in QL

networks. To see why, let us rebtwn to themwde ecuations (8) and

ithe associated dissination function . Relaxing node j'corresponds 10

‘moving along the surface @! in a'direction parallel to the ej-axis

" until a statlonary p01nt with respect t0 e is found. (This will be
. J-
a nminimun in tne QL case. ) Tnus, re;avatlon is eouivalent to descent on: -

the surface ¢‘ mov1np nur allel to one coordinate arls at a tlme, and -

contlnulng thls nrocess untll the minimom is renched. “(See Fig.‘3).‘

The form of the fanction ¢‘ for QL netvo ris as ures the ‘o nvergence .

of - thls procedure., (Re;er ﬁo‘gqnd;tions,(l)‘an@l(Z)‘on pége%6.)i'

-—— - - - - .
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3. Auvtonomous RLC Networks. :

In this sect*on we shall ‘examine the guestion of constant limiting
regimes in R'LC networl.s wm,ch are autonOmouS' 1.e., containing only
constant exc:.tatzon amd ume-mvwlant elenento. To simnlify the

i develop*xenu it is conven:.enu to umnz of an R.uC networx as havzm* been

constructed by startlm, w:.th a general rcs:.st1ve netvoriz, making an

_A arbitr Ty nunber of entr:.e., :.m;o uhls networi, and inserting a capacitive
ibra.ncn 1nto each solderm.r -n'on entry and an inductive ‘orancn into each nlle
'entry’. The ne‘cworc can then be viewed as three multl-vaort subnetworz:s‘
connected as‘s'hown in Fig.'é‘g.‘ Assuning that the sgt'of entries is-
"complet'e,__the dynanic 4equations‘ for the ‘system'wi_ll”_ tak'ei th‘e;_xform,
o (C_‘)é= —J—s(b, ?) | o .
A". L(Pip= -E <‘“*‘P3 o . (‘1'1)“

where’ C(es) is the 1ncreueAual cépacnance na tzix Dl/?t. of the
-elements faélng the soldering-iron entrles (o = capac_:ltor charge) and
: L(ip) is the incremental‘ inductance matrix 975/91}_' of the elements
‘«".faCin{;' the »pliers ént_,r‘i_es (>\='fluxv-linl:a,ges ).. The state var_iabler; ‘
(es, ip‘) comprise the voliages on each‘cépaci.tgr and the curren’c_si

tnrouf*n each 1nductor.' I‘Iow, assuning that all elements are reciprocal,

Ka “q (ll) can be rebresentec. in the more COﬂPan .Lor'a,

TfElaoze o e
J "? i 3({’) g)_\' ’ ¢t : L

where

Les) O 1
= (sym.evnc)
B o —Lk‘p)j

v

and §" is a hybrid dissipatlon function derived from the right hand side

of (11): ' e

30.(11) is valid fo. nuch less I".,S"""].Ctlve claqfes of networks than we heve
1"xp4.1ed The zestrictive assum»tions vwere imposed to simmlify the exmosition.

..,,_‘_‘ﬂ.-ﬁ.,.
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Equation (12) reduces to . »
S s 08 ¢ = | Lo (w)dw 2
Cley &= m\3g, ) where F0 =)L t0% (12)
in the RC case and to the dual of (13) in the RL case.
4This formulaiion, fifst used by Brayton.and Moser [3] ,
offers rmuch insight ihto the question of a constant limiting regime.
- For ‘example, consider the relatively simple case of a reciprocal RC
network in which all capacitors are QL. We note first that (13)
“implies that 211 solutions of the network eauations low " gownhill®

on the dissipation funcﬁion ¢r. Thisis deduced by evaluatlnb

4@t /at along solutions of (13), giving

ol : 3 i
a?ip (M) e, = -—ex C,(t’;) 2, .
AT ¢ (14)

~Since the canacltors are QL,’ ( ’) is positive definite for

21l e and uhus the rate of chunge of ¢‘ is always negad ive except
s

at points where e O that is, the eou1¢1br1a of tne setwork (sincular-~

ints of (13 )) ‘ Now, if ¢‘ uends rndlally to + o (which it
;\'normallyidoes inereallnetworks), then the "downhill"'condition (14)
will assure that no solution can grow w1tnout bound, and that all
71;‘1n1t1al condltlonq l,ad uO solatlons wnich tend toward: s1n5ular poznts
qf.(lz)jasrt'f:an.-iThose'sgngplar points,correspon@ing to minima of
t}_le'functionb¢i afeistabie équilibria df‘the netwo;k eqﬁatidns. Other
sﬁationary*fointg.:epresenttuQStéble equilibria. Thué, under these
conditions,.éVconsﬁantilimitiﬁe regzne exists.

It is interesting tovnote that these concluSiqns were reached.

wmunout tne °lluhueSu blu of cuentltwt*ve in ;orne»ion on the network.
Tne essentlal assunnt ons required were merely that all resistors were

'reciprocal-and all'capacitors were'QL.
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EXAVPIS 4: To. illustrate the usefulness of the above result,

consider the following problem: A resistive networit is composed of

QL elements plus an arbiirary number.of“(one;port) voltage—-controlied

- nezative resistance (VCNR)‘elements. (The VCiR's are assumed to have

the property: 1 = +(=) © as e = +(=) ©.) It is ".-.'ell-‘known that

“such a network mey possess several ecuilidria,and that some will be stable

and others unstable. Assuming that stability is governed primarily by

' the stray.capacitances in the network, how can we determine which

equilibria will be stable, and vhether the metwork h

as & Coiis

limiting regime? To investigate this problem, let us augment the

resistive network by adding linear positive capacitances of arbitrary.

values to the network at arbitirary solderins-iron entries. The only

restriction which need be placed on the augmentation is that each VCER

is shunted by some capacitance. Under this very rcasonable restriction,

~we find that thé’ne:work equations‘réduce t0 the form (13), and that

all the recuirements for a constant limiting regime are satisfied.

Any equilibrium corresponding to a minimum of @' is stable, vhere §°

is the dissipation function for the network as viewed from the

capacitor terminals. Since this result is based on the resistive element

characteristics slone, it is compnletely independent of the location and

-values of the awmentincs czoacitances.:

To obitain similar results for networls containing both L's 2nd C's

. is considerably more difficult, the reascn being that the solutions of

(12)"will not run downhill on the function @" because the maitrix J is
not positive definite. However, it has Deen shown that the pair J, ¢"

e e e s o 4
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in (12) can be replaced by various eguivalent pairs, 3, &' without
chancing the solutions of the eguations. Thus, to demrnsirate tae
existence of a conétant liniting ré gime in 2 reciprocal RLC network
we musi scek an equivalent represenuaulon o* (lo) in which solutions
. Tan downhill’dn thé dissipation function. Without going into the
details of‘this'procedure‘ﬁetshall'i;lustrate its application in a
'particular‘caée. ' |
SXAPLE D: Let us conéidef the7éffec£s~of'stray inductances :
as well-as“stray‘capacitances infthe network of example 4. We shall
augment the reéisti&e network by adiing linear positive capacitors at
arbitrary solderiﬁg—iron entries and linear positive inductors at
arbitrary pliers'entries, subject only to the sanme resiriction as
fSeforei that each VCIR be shunted oy some capacitance. Such a network
can be described by«(lé).wﬁere c énd‘L will be §on$ant symmefric and
‘posipive definite.l Furthermore,‘it turns out‘that'an equivalent pair J, ¢“
'1aving the.desired.“dpwnhi}i“.properties can be fqugd (see Esj )

1 Drov1ded that : ;\

n (KER L >+m(c cLE)>0
fwﬁerm ;  | K |
m(A) glb of the elbenvalues of A.
= Q;.;*é_;ﬂ(ﬁ”)* s Dv")
TN T Y\ ae . = :LP 245
To interpret cond o (15) physically, note tna‘ the matrix G

'renresents the 1ncrenenual conaucuance motrix at the capacitive ports

oy

when the inductor currents are Leld constant (Refer to Fiy. 4), and

thus tne ;1rst terﬂ in (15) reﬁreseﬁts the leust RC "lncrenentar' natural

e e e o e, e e g e o e e
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freguency. Because of the presence of the VCIR's this may be negative.

Similarly, R represents the incremental resistance mairix at the
inductive terminals.when the capacitor voltages'are held conetant.
Because of the way in which the auémentafion:was performed, the
re51st1ve.nepwor“ will be QL vhen viewed from the inductor ports, and
hence R will alvays be nosz*zve de*lnlve. ine‘second term in (15)
represents the smallesu RL incremental natural frequency. Because

of the QL condition just mentieﬂed, this willfbe positive. For
. J

arbitrary values of canacitors end in auctors 1t is clear that condition

.(15) may not be fulfilled and thus ike neiwork may not have a constant
limifing reeime. HoueVer, condition (lo) can aluays be fulfilled by
meking the inductances bu1f¢c1enu;y small qnd/or the canaciuqnces
sufflclently large. The conélusion therefore , is that in a network -
of QL .e51soances and VCNR's increasing the stray capacitances and
decreasing uhe ‘stray 1nducgances tends to "stabilize" the neuwork.
(Under constant llmlting reglne conalulons the equilidbria which were

stable 1n uhe RC case. w:ll also Be stpble in uhe RIC case.)

"4, RIC Networlks with Excitation.

In order to explore the behavior of forced RLC networks, let us

associate an arbitrary set of independent, possibly time-varying sources.

with the ?esistive elements in %he manner‘of Tig. 2. Insertion ofbfhe
sources modifies (11) to the forn
‘ . B CL;S = ".zsv(tsl l‘?’ W) : : .. (15)
o Lip= =8l ip, %) | |
wvhere u (2 &ector time functiog, in general} repfesents the effects
of sources. There are many common examples of networlts of this type

wnlch 4o no% exhibit a unigue limiting regime. For example, many simple

circuits containing nonlinear reactive elements will, when driven by

‘-
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following example shows that a few addit

a sinusoidal excitation, produce either-a narmonic or é subharmonic
response depending uﬂon.initial conditions. Such'circuits clearly
do not exhibi%la unigue limiting regime. Neithef recipfocity nor
vasilinearity is enoush to inswe a wique limiting regime, but the’
| itional restrictions will assure
this condipion. 

MPLT 6% Consider‘a nétﬁork-describgble vy (16) vhere all
capacitances and‘inductanCes are iinear and'ﬁositive, each capacitance
is shunted by a resistive branch, and each 1aaucuance is in series
with a ?egiétive branch. These assumptions imply that C and L are
constant symmetric and positive'definite, and that the network is
&L when viewedvfrom the entries associated with (es, ip), for;any

fixed value of u. TIFrom-these conditions it follows easily that

-2 bounded excitation u(t) moduced a bounded response. Vhat we

wish to show is thet for a given inpuz'u(t), solutions of (16) starting from

any initial st ate will all uend QSJmatotlca’ly to a unlque response.

Consider any two solutions (e , 1 ) and (e', i')_correspondine to the
. .8 r s P .

same excitation. Us_nu . L e :
1 . )
v (e-22) 0 (el >+( )L (5m7)
as a meaSure of the &i Jerence between these soluulons, ve find Sfrom

(16) that

5 =-(e;-f:'f[fs(fsx;>>-I!(f:, )] - >[£m,,) 5e, )] 07

But it can be shown [4] 'that the QL condition implies that the

riFht hand side of (17) is & =k$é vhere k is a vositive constant. This

-

is enough to'insure that any two solutions approach each other as t =

that is, a unlcue 1 miting reglle ex1sus.

e g e o
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We have given several illustrations of the waj in vhich
reciprocity and guasilinearity can be used to pre&ict the cualitative
'aeha_vior of networks. : courée, many other illusirations exist,
and in manyvcases the.seme results could haveAbeén proved with slirhily
less re;trictive assumptions;l Ip'any case, fhe ssatus of "gualitativet °

networl: theory today suscosts that much remnins to be learned, and that

this is a very fertile area for current research.

- -
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